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ABSTRACT

Maximum Likelihood (ML) modeling of multiclass data us-
ing gaussian distributions for classi�cation often su�ers from
the following problems: a) data insu�ciency implying over-
trained or unreliable models b) large storage requirement c)
large computational requirement and/or d) ML is not discrim-
inating between classes. Sharing parameters across classes (or
constraining the parameters) clearly tends to alleviate the �rst
three problems. It this paper we show that in some cases it
can also lead to better discrimination (as evidenced by re-
duced misclassi�cation error). The parameters considered are
the means and variances of the gaussians and linear trans-
formations of the feature space (or equivalently the gaussian
means). Some forms of sharing (either explicit or implicit
via constraints) on the parameters are shown to lead to Lin-
ear Discrimination Analysis (a well-known result) while oth-
ers (like diagonal, block-diagonal and factor analyzed covari-
ances) are shown to lead to optimal feature spaces. The key
idea is that in constrained ML modeling one may be able to
better model the data after it is linearly transformed, perhaps
in a class dependent fashion. If the constrains are invariant to
linear transformations (ILT), then, the original feature space
is as good as any to model the data. Results using optimal fea-
ture spaces for diagonal covariances is shown using the speech
recognition problem as an example.

1. INTRODUCTION

Modeling data using Gaussian or Gaussian mixture distribu-
tions is very common in many applications. This popularity
stems partially from the fact that any distribution can be ap-
proximated by gaussian mixtures and partially from the fact
that a rich set of mathematical results and computational
techniques are available for using gaussian distributions.
This paper considers modeling data using gaussians for clas-

si�cation applications. The basic problem is the following:
Given labeled training data how does one model it \well"
for classi�cation applications. An implicit assumption here
is that the training data and the test data have the same un-
derlying statistical distributions. With this assumption, it is
reasonable to try and model the training data as well as possi-
ble. The Maximum Likelihood (ML) Principle is the criterion
of choice in this paper. Some dissimilarities between the train-
ing data and test data can be accounted for by parametrically
adapting the the trained models. In this case, the ML prin-
ciple is invoked on the test data: adaptation parameters are
chosen to maximize the likelihood of the test data; clearly, an
example of constrained ML modeling with gaussians.
The focus of this paper is parametric modeling of training

or test data with gaussian distributions using the ML princi-
ple. If the data is modeled with gaussian mixtures, then each
data sample can probabilistically assigned to the gaussians
and a similar analysis as below can be carried out. Using
the EM algorithm these assignment probabilities can be iter-
atively re�ned [6].

The main idea emphasized in this paper is that in con-
strained ML modeling (eg., diagonal covariances, factor-
analyzed covariances [17, 18]) there are optimal feature spaces
in which to model the classes. This author was �rst exposed
to this idea in the context of diagonal covariances in [1] where
the author was trying to generalize linear discriminant analy-
sis. Independently, the same idea in the context of diagonal
covariances is also explored in a slightly less general form as
\semi-tied" covariances [2, 3], where the author tries to model
data with covariances of the form ADjA

T where A is shared
between gaussians and Dj is a diagonal gaussian-dependent
term. This paper generalizes this notion to factor-analyzed
covariances and more by introducing the notion of covariance
and mean structures that are invariant to linear transforma-
tions.
The training data is a collection of N independent la-

beled vectors (xi; li), xi 2 IRd, li 2 f1; 2; : : : ; Jg and i 2
f1; 2; : : : ;Ng. Each class j 2 f1; 2; : : : ; Jg has Nj samples
and is modeled by a Gaussian distribution with mean �j and
covariance �j. The likelihood of the data is given by

p(xN1 ; f�jg ; f�jg) =
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In ML modeling the idea is to choose the parameters f�jg
and f�jg so as to maximize p(xN1 ; f�jg ; f�jg). For later use
it is convenient to organize classes into K class clusters with
the cluster identity cj 2 f1; 2; : : : ;Kg. By collecting together
terms for each class in Eqn. 1, p(xN1 ; f�jg ; f�jg) can be easily
expressed in the following well-known fashion:
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where ��j and ��j are the sample means and covariances re-

spectively of the classes and a(N;d) = (2�)�
Nd
2 .

Now consider linearly transforming the samples from each
class: yi = Alixi, where Aj is a non-singular d � d matrix.
This gives an new dataset (yi; li) which can also be modeled
with gaussians. However, it is di�cult to compare the likeli-
hood of a test data sample coming from the classes when the
classes are modeled in the transformed space. The problem is
one of scaling: one can always choose Aj such that the like-
lihood of data from class j is arbitrarily large. Two obvious
approaches to compare likelihoods suggest themselves. One is
to ensure that jAjj = 1 for every class, in which case the likeli-
hood of the data corresponding to each class is the same in the
original and transformed spaces (implying p(xN1 ) = p(yN1 )).
The second is to only consider the likelihood in the original



space (i.e., p(xN1 )) even though the data is modeled in the
transformed space. In this case it is easy to show that

p(xN1 ; f�jgx ; f�jgx) = p(yN1 ; f�jgy ; f�jgy)
JY

j=1

jAjjNj ;

which again shows that ensuring jAjj = 1 ensures that the
likelihoods are the same. Is there any advantage in mod-
eling yN1 rather than xN1 ? If the data is modeled using full-
covariance gaussians, then, it makes no di�erence. However, if
one constrains the variances to be structured (block-diagonal
or diagonal, for example), then, the transformations can be
used to �nd the basis in which this structural constraint on
the variances is \more valid" as evidenced from the data.

2. SINGLE CLASS

Consider ignoring the class labels and modeling the entire
data with one gaussian: (�;�) (with one class there is
no longer a classi�cation problem; however, the discussion,
should bring out the key ingredients in the multi-class prob-
lem). Then from Eqn. 2, pone(x

N
1 ; �;�) can be expressed as
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2
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where �� and �� are the global mean and covariance of the data.
Clearly, pone(x

N
1 ; �;�) is maximized by the ML estimates �̂ =

�� and �̂ = ��, whence the ML value of the training data is
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where g(N; d) = (2�e)�
Nd
2 . On average each sample con-

tributes ���
1

2 to the ML value p?one(x
N
1 ), which, depends only

on the training data.

2.1. Linear Transformations of the Data

Consider a global non-singular linear transformation of the
data: yi = Axi. If (��; ��) and (��y; ��y) denote the sample
mean and covariance respectively (abuse of notation!!) in the
two spaces, then, ��y = A�� and ��y = A��AT . The maximum
likelihood values in the two spaces are related as expected:
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If jAj = 1 then p?(yN1 ) = p?(xN1 ). Essentially, the ML value
is invariant to unimodular or volume-preserving linear trans-
formations of the data.

2.2. Constrained ML - Diagonal Covariance

If we are constrained to use a diagonal covariance model,

Eqn. 3 is maximized by the estimates �̂ = �� and �̂ = diag(��).
The ML value is given by

p
?
diag(x

N
1 ) = p(xN1 ; ��; diag(��)) = g(N;d)

��diag(��)
���N

2 :

Because of the diagonal constraint on the covariances,
p?diag(x

N
1 ) � p?(xN1 ), which interestingly gives a proof of

Hadamard's inequality for symmetric non-negative de�nite
matrices:

��diag(��)
�� �

����
��.

If one linearly transforms the data (yi = Axi) and models

yN1 using a diagonal gaussian then ML value is

p
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2 :

The best ML value is a function of the transformation A which
is assumed to be unimodular. One can maximize this over A

to obtain the best feature space in which to model with the
diagonal covariance constraint. By inspection it is easy to see
one optimal choice of A: A = UT , where ��x = U�UT is the
eigendecomposition of ��x. With this choice
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N
2 = g(N;d)

����x

���N
2 = p

?
one(x

N
1 ):

In other words, in the transformed space there is no loss in
likelihood relative to full-covariance modeling.

3. MULTI-CLASS MODELING

In this case the training data is modeled with a Gaussian for
each class: (�j;�j). One can split the data into J classes
and model each one separately. Hence the ML estimates are

�̂j = ��j, �̂j = ��j and the ML value is

p
?(xN1 ) = p(xN1 ; f��jg ;

�
��j

	
) = g(N;d)
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2 : (6)

Notice that the ML estimates of the parameters for each are
obtained solely based on the examples from the class. There
is \no interaction" between the classes and therefore uncon-
strained ML modeling is not \discriminating" between the
classes.
Each class can be modeled in its own feature space using

unimodular transformations as discussed earlier. However,
this does not change the ML value or help in better classi�-
cation.

3.1. Constrained ML - Diagonal Covariance

In this case the ML estimates are �̂j = ��j, �̂j = diag(��j),
and the ML value is
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If one linearly transforms the data from each class with a
matrix Aj, and then models it with a diagonal gaussian the
ML value of likelihood is
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Equivalently the likelihood of the data in the original space is
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By choosing Aj to be the eigenbasis of ��j, p
?
diag(x

N
1 ) achieves

the value p?(xN1 ), the likelihood of full-covariance modeling.

3.2. Multi-class ML Modeling - Some Issues

Firstly, if the sample size for each class (Nj) is not large
enough then the ML parameter estimates may have large vari-
ance and hence be unreliable. Secondly, the storage require-
ments for the model is O(Jd2) - either you have to store the
full-covariance or the diagonal covariance and its associated
optimal feature space transform. Thirdly, in order to compute
the likelihood of some test data using this model the compu-
tational requirement is O(Jd2): either you have to transform
the data samples for each class and evaluate a diagonal gauss-
ian or you have to evaluate a full-covariance Gaussian for each
sample. Finally, the parameters for each class are obtained
independently: ML principle does not allow for discrimination
between the classes.



If we share parameters across classes then it reduces a) the
number of parameters b) storage requirements c) computa-
tional requirements and sometimes d) is more discriminating
leading to better classi�ers. Claim d) is hard to justify with-
out quantifying what we mean by discrimination. However,
in some cases we will appeal to the Fischer-heuristic of Linear
Discrimination Analysis and a result of Campbell to argue
that sometimes constrained ML modeling is discriminating
between classes [5, 1].
We have already seen that by imposing diagonal Gaussian

models in the original feature space the number of parameters
and the storage and computational requirements are reduced
substantially. However, this comes with a loss in likelihood.
Moreover, it is not discriminatory since the model parameters
for the classes are estimated independently. We can globally
transform the data with a unimodular matrix A and model
the transformed data with diagonal gaussians. In this case
too there is a loss in likelihood. If, among all possible trans-
formations A, we can choose the one that takes the least loss
in likelihood, in essence we will be �nding a linearly trans-
formed (shared) feature space in which the diagonal gaussian
assumption is most valid (in the sense of least loss in likeli-
hood). This is the main idea emphasized in this paper. We
now look at some examples of constrained ML estimation with
sharing of parameters.

3.3. Constrained ML - Equal Covariances

Here all the covariances are assumed to be equal. The ML

estimates are �̂j = ��j and �̂ = W =
P

j
Nj

��j. W is the so-

called within-class-covariance. The sample covariance of the
entire data (i.e., all N samples) is the sum of the within-class-
covariance and between-class-covariance:

�� = W +B =
X

j

Nj
��j +

1

N

JX
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Nj ( ��j � ��) ( ��j � ��)T :

Each sample on average contributes 1p
jW j

to the likelihood

and the ML value is
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Clearly p?(xN1 ) � p?eq(x
N
1 ) (since the later imposes the equal

covariance constraint and constraints can only reduce likeli-
hood) and this gives a proof of the fact that the log of the
determinant of a symmetric non-negative-de�nite matrix is
concave. Indeed from Eqn. 8 and Eqn. 7
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Also, since p?eq(x
N
1 ) � p?one(x

N
1 ) we get the following inequal-

ity for non-negative de�nite matrices W and B:

jW j � jW +Bj : (10)

3.4. Equal Covariance Clusters

Classes are organized into clusters and each cluster modeled
with a single mean or collection of means and a single co-
variance. In the former case the data can be relabeled using
cluster labels (mi = cli) and ML estimates and ML values
can be obtained as before for the full-covariance multiclass
case. In the latter case (of per class mean but per cluster
full-covariance), the data can be split into K groups; in which
case this essentially becomes the \equal-covariance" problem
for each group.

3.5. Diagonal Covariances and Class Cluster Trans-

formations

Again classes are grouped into clusters. Each cluster is mod-
eled with a diagonal gaussian in a transformed feature space.
That is yi = Acli

xi and yN1 is modeled with a diagonal gaus-

sians. The ML estimates in the original feature space are given

by �̂j = ��j, �̂j = A�1
cj
diag(Acj

��jA
T
cj
)AT

cj
and the ML value

in the original feature space is
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(11)
One can choose the best feature space for each class cluster
by maximizing over the Ak's, k 2 f1; 2; : : : ;Kg. Notice that
the Ak for each class cluster is obtained independently. In
the extreme case where the number of clusters is one (i.e.,
K = 1), there is single global transformation and the classes
are modeled as diagonal gaussians in this feature space. The
optimal A can be obtained by optimization as follows:

A = argmaxA jAjN
JY

j=1

��diag(A ��jA
T )
���

Nj

2 : (12)

Di�erentiating the log of the objective function with respect
to A and setting it to zero we get

X

j

Nj(diag(A��jA
T ))�1A��j = N(AT )�1:

Either one can numerically optimize the objective function or
solve the above nonlinear equation numerically. For e�cient
(time or memory) algorithms see [4].

3.6. Equal Covariances and Reduced-Rank Means -

LDA

An interesting connection between ML modeling and Lin-
ear Discriminant Analysis was noticed by Campbell [5]. If
the class covariances are equal and the means lie in a p-
dimensional a�ne subspace S � IRd (obviously p � min(J �
1; d)) the estimates of the means and the common covariance
are projections of the sample means and the within class-
covariance onto the top p LDA directions. In this case, the
parameters are � and �j , with Span f�jg p-dimensional. The
ML estimates are given by [5] �̂j = WLLT (��j � ��) + �� and

�̂j = W +
P

j

Nj

N
(��j � �̂j)(��j � �̂j)

T , where L is the ma-

trix of p leading eigenvectors of W�1B (or LDA directions).
This suggests that a formulation of ML with unequal covari-
ances should, being a generalization of LDA, lead to better
discrimination; an idea explored by Kumar in [1] where the
development can easily be seen to imply the results of the
previous section as a special case.

4. CONSTRAINED MEAN ESTIMATION -

MLLR ADAPTATION

Consider the constrained estimation of the means of the form
Amj + b, where fmjg are known. The variances �j are as-
sumed to be known. From Eqn. 2 by substituting for �j and
�j we get a quadratic expression in A and b. Maximizing the
likelihood of the data is equivalent to minimizing this qua-
dratic expression:

P
j
Nj(��j �A�j � b)T��1

j (��j �A�j � b).

The optimal values of A and b are obtained by solving a set
of linear equations. This is essentially the MLLR technique
for adaptation of gaussian means which is widely used in
speaker/environment adaptation [8]. fmj;�jg can be thought
of as prior means and variances and the idea is to adapt mj to
Amj+b by choosing parameters that maximize the likelihood



of the adaptation data. Typically in standard implementa-
tions of MLLR, there are several (A; b) pairs shared across
class clusters that are independently estimated. Also typically
the �j's are assumed to be diagonal in the above problem.

5. CONSTRAINED VARIANCE ESTIMATION -

FULL-VARIANCE ADAPTATION

TRANSFORM

Given a prior model with means f�jg and diagonal variances
fDjg and some adaptation data one can ask what is ML es-
timate of constrained variances of the �j = ADjA

T for some
parameter A. Such a constrained form for the covariance has
the advantage that it can be implemented using diagonal co-
variances with a feature space transformation and transfor-
mation of the means [4]. In this case, from Eqn. 2 one sees
that this corresponds to minimizing the following expression
over A:
X

j

Nj

�
log j�jj+ Tr(A�T

D
�1
j A

�1
�
��j + (��j � �j)(��j � �j)

T
�	

;

where �j and Dj are prior information about the means and
variances and ��j and ��j are sample means and covariances
from the test data (see [4], where an e�cient algorithm to
compute A is given).

6. CONSTRAINED MEAN AND VARIANCE

ESTIMATION - SPEAKER ADAPTED

TRAINING

The Speaker Adapted Training (SAT) technique described in
[9] can also be viewed as a constrained ML estimation prob-
lem. In this case, each speaker (or environmental condition)
has its associated set of gaussians. So the parameters are the
means and covariances of all the classes for all the speak-
ers. However, SAT postulates the existence of a \canoni-
cal" speaker with means (mj and covariances �j) such that
the means of class j for speaker s is estimated in the form
�s;j = Asmj + bs and the variances are �j. The parameters
in this estimation are fmj;�jg [ fAs; bsg.

7. FACTOR ANALYZED COVARIANCES -

SHARED FACTORS

In earlier sections we saw that the covariance structure of
gaussians can be captured better with diagonal gaussians if
the classes are modeled in an optimal feature space. Equiv-
alently, one can say that covariances are represented in the
original space as ADjA

T , where Dj are the diagonal covari-
ances in the optimal space and A maps the optimal space
to the original space. For the covariance, this structure is
one of many structures that is more exible than a diagonal
structure. A classic method of modeling covariance structure
with a reduced number of parameters is factor analysis [14].
Recently, factor analysis has been successfully used to model
the covariance structure for the speech recognition problem
[17, 18]. In factor analysis each class covariance is assumed
to have the following form �j�

T
j +	j, where 	j is a diagonal

\speci�c" covariance, and �j�
T
j is the \commonality" vari-

ance. �j is the \factor loading matrix", which usually has
fewer columns (each column corresponding to a factor) than
rows. Factor analysis corresponds to modeling the data x
from a gaussian process using zero-mean, unit variance uncor-
related factors z and zero-mean uncorrelated \noise" u with
variance 	.

x = �z + u+ �: (13)

Clearly, the mean of the gaussian process is � and the covari-
ance is ��T + 	. From Eqn. 2 one can directly compute the
ML estimates of the factors numerically. In fact for gaussian
mixture factor analysis an EM algorithm the explicitly uses
factor variables has been available for several years [15, 16].

One can imagine scenarios where either the 	j 's, �j's or both
are shared across class clusters to reduce the number of pa-
rameters. In all these cases, in a straightforward algebraic
fashion (writing down the so-called Q function and di�eren-
tiating it with respect to the parameters) one can obtain an
EM algorithm for the factor loading matrices and speci�c vari-
ances within. The latent variables in this EM algorithm are
the factors [13].

8. FACTOR ANALYZED COVARIANCES AND

OPTIMAL FEATURE SPACES

Factor analyzed covariances represent speci�c assumptions
about the structure of the covariance matrix. This begs the
questions whether these assumptions are \more valid" in a
linearly transformed space. For example consider the single
gaussian case. In this case, for a given number of factors �
and 	 can be obtained. However, if we linearly transform
the data into the eigenbasis of its sample covariance matrix,
then, in that space the optimal � is zero and 	 is the diago-
nal matrix of eigenvalues of ��. Moreover, there is no loss in
likelihood relative to full covariance modeling. Such optimal
transformed spaces can, as we have seen before for the diago-
nal constraint, be chosen in a class-cluster dependent fashion.
In the original space, the covariance is being represented in
the form A��TAT + A	AT . Since A� can be re-labeled as
�, factor analysis in optimal feature spaces corresponds to
having covariances of the form �j�

T
j +A	jA

T in the original
space. These A's could be shared across a cluster of classes
and be labeled Ak. In a fairly straightforward fashion one can
concoct a numerical scheme, which, given fAkg, computes the
optimal �j's and 	j's. A descent algorithm can therefore be
used to �nd the optimal fAkg. A more e�cient way to com-
pute the �j's, 	j's and Ak's is possible by explicitly using
the hidden factor variables and the EM algorithm. In this
case, the �j's, 	j's, and Ak's (each of which could be indi-
vidually shared across classes albeit with minor constraints)
are obtained in the M-step and guaranteed to increase the
likelihood [13].

9. CONSTRAINTS AND OPTIMAL FEATURE

SPACES

Constraints on the covariance structure sometimes implies a
better model in an optimal feature space. Equivalently, this
implies a modi�ed (and more exible) covariance structure
in the original space. The former interpretation is useful,
for example, in classi�er implementation, while the latter is
sometimes more useful for simplifying the problem. One won-
ders, then, what constraints on the mean and covariance can
be better modeled in linearly transformed spaces. The an-
swer is simple: if a covariance constraint is invariant to linear
transformations (ILT) (i.e., if � is of a particular form then
A�AT is also of the same form), then there is no gain in going
to any other linearly transformed feature space; similarly, if
a constraint on the means is invariant to linear transforma-
tions, there is no gain in going to a linearly transformed space
for modeling. Some examples will illustrate this point. Take
LDA for example: the constraint on the variance is ILT (since
its a shared covariance), and the constraint on the means is
also ILT (since its a geometric constraint on the means - their
being reduced rank). Therefore, LDA is invariant to linear
transformations of the data; one does not talk about optimal
feature spaces for LDA! As another example, consider diag-
onal or block diagonal covariances: clearly this is not ILT.
However, if the constraints are of the form ADjA

T , with Dj

diagonal, then they are ILT. Therefore linear transformations
should give no gain in likelihood. The same goes with with
factor analysis: covariances of the form ��T +	, with diag-
onal 	 are not ILT, while those of the form ��T + A	AT

are ILT. Finally consider MLLR adaptation where the means



are of the form Amj + b. This is invariant to linear transfor-
mations. Indeed, if transformed by B, the mean in the new
space has the same form: BAB�1Bmj + Bb. In summary, if
one imposes constraints on means and variances, then, either
they have to be ILT or one can model better in an linearly
transformed optimal (perhaps class-dependent) feature space.

10. THE CONSTRAINED ML RECIPE

The main idea in this paper can be summarized as follows:

if (constraints on means and covariances are ILT)
solve standard constrained ML problem

else
either

design optimal feature spaces using a
generic numerical algorithm or one specialized
to the problem

or
reformulate an associated ILT constraints problem
and solve it numerically

fi

The optimal feature space viewpoint is useful from an im-
plementation point of view because once the optimal feature
space is designed any available code for the constrained ML
problem can be reused. Often, the equivalent ILT problem is
easier to work with to derive a numerical algorithm for de-
signing the optimal feature space. In this section we tabulate
several situations in which gaussian parameters are estimated
in a constrianed ML fashion (some of which we've already
seen) and state whether the constraints are ILT or not.

11. SPEECH RECOGNITION EXPERIMENTS

A study of optimal feature spaces for diagonal gaussian mod-
eling was carried out in the context of the ARPA Hub4 Broad-
cast News (BN) speech recognition task. The baseline recogni-
tion system ([11]) had 3500 classes (HMM states) modeled by
gaussian mixtures (a total of 90K gaussians) in IR60 obtained
by double-rotation (a variant of LDA) of cepstral features de-
rived from the speech data [10]. The training data consisted
of N � 24M labeled samples. Because of data insu�ciency
and storage cost, sample covariances were computed only at
the HMM state level. In other words, for computing the op-
timal feature spaces the classes were assumed to be modeled
by gaussians (rather than gaussian mixtures). The optimal
spaces were obtained by numerically optimizing Eqn. 11 using
a conjugate gradient method with analytic gradient supplied.
Once the spaces are known, using standard techniques, the
classes were modeled by gaussian mixtures. The test data
consisted of the planned speech (F0) and spontaneous speech
(F1) portions of the 1996 DARPA Hub4 evaluation test. Re-
sults of two experiments are shown in Table 1 showing a sig-
ni�cant gain in accuracy. The �rst experiment used a single
feature space transform (i.e., single cluster), while the second
used four class clusters; one each for the HMM states of the
following sounds a) stop-consonants and aps, b) fricatives,
c) vowels and dipthongs d) nasals, glides and silence. The
single cluster case performs better than the four cluster case.
In fact several experiments with phonetic unit as clusters (51
clusters) and sub-phonetic units as clusters (153 clusters) were
attempted with marginal gains at best over the single cluster
case. This example seems to suggest that sharing between
classes (in this case feature spaces for class clusters) seems to
lead to better classi�cation and hence discrimination.

12. CONCLUSION

This paper describes several issues in ML modeling with gaus-
sians. In particular it shows that constrained gaussian mod-
eling generally implies an optimal feature space in which the
constraint is more valid. Several examples of this phenome-
non are given. Sometimes constrained ML modeling can also

Expt F0 (planned) F1(spontaneous)
Baseline 21.1 29.1
1 Transform 19.3 28.4
4 Transforms 19.4 29.0

Table 1. % Word Error Rate Using Optimal Fea-

ture Spaces for Diagonal Gaussian Modeling of HMM

state clusters: a) Baseline b) Single feature space c)

Four class cluster feature spaces.

lead to LDA, a classical result that seems to be relatively un-
known in the speech recognition community. Constraints such
as sharing parameters leads to advantages in robustness, com-
putation, storage, and perhaps discrimination. Some well-
known matrix inequalities are introduced in the context of
ML modeling. Several model adaptation algorithms can also
be viewed as constrained ML modeling of adaptation data.
An application of the optimal feature space idea in the con-
text of diagonal gaussian constraint for the speech recognition
problem is shown to give signi�cant improvements to baseline
word error rate. Covariance modeling using factor analysis in
optimal feature spaces was introduced. This is being currently
investigated for the speech recognition problem [13].
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